
Abstract

proof-of-work to provide most of the network security. The development of modern

Bitcoin release, although it should be noted, some work in this direction was made earlier.
In Bitcoin resistance against rewriting (also known as double-spend) is supported by the
mechanism of Proof of Work based on the double-sha256, which requires from attacker to
have more computing power than other "honest" miners altogether. Some solutions marked
by Bitcoin development team were criticized by experts and as a result alternative
currencies were created. NameCoin suggested to use blockchain as a distributed database.
For the first time Namecoin implemented merged mining method, which allows to protect
the namecoin chain with Bitcoin network. Other researchers have proposed changes to the
algorithm PoW, this as it was thought to be more resistant against centralization, for
example, Litecoin (scrypt). Like Bitcoin and Litecoin, we also propose a solution to the
double-spending problem using a peer-to-peer network. The network timestamps
transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a
record that cannot be changed without redoing the proof-of-work.

Introduction

Since the creation of Bitcoin (Nakamoto 2008), proof-of-work has been the predominant
design of peer-to-peer crypto currency. The concept of proof-of-work has been the
backbone of minting and security model of Nakamoto’s design. While keeping this in
mind, we have realized that, the concept of scrypt can facilitate to add more security to
Bitcoin’s proof-of-work system. We have since formalized a design where proof-of-work
is used to build the security model of a peer-to-peer crypto currency and part of its
minting process. Scrypt is a password-based key derivation function created by Colin
Percival, originally for the Tarsnap online backup service. The algorithm was specifically
designed to make it costly to perform large-scale custom hardware attacks by requiring
large amounts of memory. A simplified version of scrypt is used as a proof-of-work scheme
by a number of cryptocurrencies first implemented by an anonymous programmer called
ArtForz in Tenebrix followed by Fairbrix and Litecoin. We have also implemented the
same in our development process.

Until it became a cryptocurrency, Virtacoin was an online payment system called Virtapay.
It had a centralized administrator and a big dream. In January, 2013, however, a project
called “The Satoshi Project” changed the game. With the Satoshi Project, the owners of
Virtapay started toying with the idea of turning the online payment system into a
cryptocurrency. So on 1st July, 2014 'Virtacoin' was born. All virtapay balances were

Virtacoin Core version 2.9.1
 2014

cryptocurrencies began in 2008 with the publication of an article by Satoshi Nakamoto and

 Virtacoin
 A Peer-to-Peer Electronic Cash System

 proof-of-work and Scrypt algorithm

A peer-to-peer crypto-currency design derived from Satoshi Nakamoto’s Bitcoin. It uses

converted to Virtacoin, shredding off 86% of all Virtapay balances it ended up as a
premined genesis of 8.4 billion (8400000000). The ownership of the coin was then
decentralised. Everybody who had Virtacoins became joint owners of it.

Proof-of-Work

We need a way for the payee to know that the previous owners did not sign any earlier
transactions. For our purposes, we have followed the Nakamoto's proposal as close as
possible. The earliest transaction is the one that counts, so we don't care about later attempts
to double spend. The only way to confirm the absence of a transaction is to be aware of all
transactions. In the mint based model, the mint was aware of all transactions and decided
which arrived first. To accomplish this without a trusted party, transactions must be publicly
announced like Bitcoin, and we need a system for participants to agree on a single history
of the order in which they were received. The payee needs proof that at the time of each
transaction, the majority of nodes agreed it was the first received.
The solution we propose begins with a timestamp server. To implement a distributed
timestamp server on a peer-to-peer basis, we have used a proof-of-work system similar to
Bitcoin, balances and issuance are done through scrypt, a sequential memory-hard function.
Legitimate users only need to perform the function once per operation (e.g., authentication),
and so the time required is negligible. However, a brute-force attack would likely need to
perform the operation billions of times, at which point the time requirements become
significant and, ideally, prohibitive.

Block Generation under Proof-of-Work and Scrypt

By convention, the first transaction in a block is a special transaction that starts a new coin
owned by the creator of the block. This adds an incentive for nodes to support the network,
and provides a way to initially distribute coins into circulation, since there is no central
authority to issue them. The steady addition of a constant of amount of new coins is
analogous to gold miners expending resources to add gold to circulation. In our case, it is
CPU time and electricity that is expended. With a premined amount of 8.4 billion, a total of
21 billion coins (20,999,999,999.9769) will be mined and there is currently a market supply
of over 11.5 billion coins. VirtaCoin has a block time of 60 seconds and with each block
mined there is a reward of 6414 coins (Genesis: 8000 coins) which is being reduced at a
rate of 0.5% per week since February 28, 2014.

The release of Virtacoin-Core wallet version 2.9.0 (Based on the Bitcoin wallet) and later
drops the default fee required to relay transactions across the network and for miners to
consider the transaction in their blocks to 0.01mVTA per kilobyte. Note that getting a
transaction relayed across the network does NOT guarantee that the transaction will be
accepted by a miner; by default, miners fill their blocks with 50 kilobytes of high-priority
transactions, and then with 700 kilobytes of the highest-fee-per-kilobyte transactions. The
minimum relay/mining fee-per-kilobyte may be changed with the minrelaytxfee option.
Note that previous releases incorrectly used the mintxfee setting to determine which low-
priority transactions should be considered for inclusion in blocks. The wallet code still uses
a default fee for low-priority transactions of 0.1mVTA per kilobyte. During periods of
heavy transaction volume, even this fee may not be enough to get transactions confirmed
quickly; the mintxfee option may be used to override the default.

Difficulty is a measure of how difficult it is to find a new block. It is a human-friendly way
of expressing the target. The target is a 256-bit number (extremely large) that all VTA
clients share. The scrypt hash of a block's header must be lower than or equal to the current
target for the block to be accepted by the network. The lower the target, the more difficult it
is to generate a block. It is important to realize that block generation is not a long, set
problem (like doing a million hashes), but more like a lottery. Each hash basically gives a
random number between 0 and the maximum value of a 256-bit number (which is huge). If
the hash is below the target, then you win. If not, you increment the nNonce (completely
changing the hash) and try again. For reasons of stability and low latency in transactions,
the network tries to produce one block every 60 seconds. Every Virtacoin client compares
the actual time it took to generate each block with the 60 seconds target and modifies the
target by the percentage difference. In other words, the difficulty is re-targeted at every
block, compared to 2016 blocks by BTC and LTC. If nNonce is 0xffff0000 or above, the
block is rebuilt and nNonce starts over at zero. The formula for difficulty calculation is as
follows: difficulty = difficulty_1_target / current_target (target is a 256 bit number)

Code Snippet:

// Crypto++ SHA256
 // Hash pdata using pmidstate as the starting state into
 // pre-formatted buffer phash1, then hash phash1 into phash
 nNonce++;
 SHA256Transform(phash1, pdata, pmidstate);
 SHA256Transform(phash, phash1, pSHA256InitState);

 // Return the nonce if the hash has at least some zero bits,
 // caller will check if it has enough to reach the target
 if (((unsigned short*)phash)[14] == 0)
 return nNonce;

 // If nothing found after trying for a while, return -1
 if ((nNonce & 0xffff) == 0)
 {
 nHashesDone = 0xffff+1;
 return (unsigned int) -1;
 }
 if ((nNonce & 0xfff) == 0)
 boost::this_thread::interruption_point();

 // Check for stop or if block needs to be rebuilt
 boost::this_thread::interruption_point();
 if (vNodes.empty() && Params().NetworkID() != CChainParams::REGTEST)
 break;
 if (nBlockNonce >= 0xffff0000)
 break;
 if (mempool.GetTransactionsUpdated() != nTransactionsUpdatedLast &&
GetTime() - nStart > 60)

 break;
 if (pindexPrev != chainActive.Tip())
 break;

Block Chain Protocol

The protocol for determining which competing block chain wins as main chain has been
done by the usage of proof-of-work in Bitcoin’s main chain protocol, whereas the total
work of the block chain is used to determine main chain.

It is possible to verify payments without running a full network node. A user only needs to
keep a copy of the block headers of the longest proof-of-work chain, which he can get by
querying network nodes until he's convinced he has the longest chain, and obtain the
Merkle branch linking the transaction to the block it's timestamped in. He can't check the
transaction for himself, but by linking it to a place in the chain, he can see that a network
node has accepted it, and blocks added after it further confirm the network has accepted it.
A transaction is usually considered confirmed after six verfications. As of Dec 2015 the
blockchain has a size of about 1 GB.

We Ignore big transactions, to avoid a send-big-orphans memory exhaustion attack. If a
peer has a legitimate large transaction with a missing parent then we assume it will
rebroadcast it later, after the parent transaction(s) have been mined or received. Orphan size
is limited at 10,000 orphans, each of which is at most 5,000 bytes big is at most 500
megabytes of orphans.

Checkpoint: Protection of Double Spending

The verification is reliable as long as honest nodes control the network, but is more
vulnerable if the network is overpowered by an attacker. While network nodes can verify
transactions for themselves, the simplified method can be fooled by an attacker's fabricated
transactions for as long as the attacker can continue to overpower the network. One strategy
to protect against this is to accept alerts from network nodes when they detect an invalid
block, prompting the user's software to download the full block and alerted transactions to
confirm the inconsistency. Businesses that receive frequent payments will probably still
want to run their own nodes for more independent security and quicker verification.

The incentive helps encourage nodes to stay honest. If a greedy attacker is able to assemble
more processing power than all the honest nodes, he would have to choose between using it
to defraud people by stealing back his payments, or using it to generate new coins. He ought
to find it more profitable to play by the rules, such rules that favor him with more new coins
than everyone else combined, than to undermine the system and the validity of his own
wealth.

We treat non-final transactions as non-standard to prevent a specific type of double-spend
attack, as well as DoS attacks. (if the transaction can't be mined, the attacker isn't expending
resources broadcasting it) Basically we don't want to propagate transactions that can't

included in the next block. Extremely large transactions with lots of inputs can cost the
network almost as much to process as they cost the sender in fees, because computing
signature hashes is O(ninputs*txsize). Limiting transactions to
MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.

An attacker can submit a standard HASH... OP_EQUAL transaction, which will get
accepted into blocks. The redemption script can be anything; an attacker could use a very
expensive-to-check-upon-redemption script like: DUP CHECKSIG DROP ... repeated 100
times... OP_1. To avoid this kind of denial-of-service attacks checking transaction inputs,
and making sure that any pay-to-script-hash transactions are evaluating IsStandard scripts
are done.

Continuously rate limit free transactions is used to mitigate 'penny-flooding' -- sending
thousands of free transactions just to be annoying or make others' transactions take longer
to confirm. The Virtacoin system also fixes an issue where a 51% attack can change
difficulty at will. It goes back the full period unless it's the first retarget after genesis. It Do
not allow blocks that contain transactions which 'overwrite' older transactions, unless those
are already completely spent. If such overwrites are allowed, transactions depending upon
those can be duplicated to remove the ability to spend the first instance -- even after being
sent to another address.

Add in sigops done by pay-to-script-hash inputs to prevent a "rogue miner" from creating
an incredibly-expensive-to-validate block.

Code Snippet:

 if (fStrictPayToScriptHash)
 {
 nSigOps += GetP2SHSigOpCount(tx, view);
 if (nSigOps > MAX_BLOCK_SIGOPS)
 return state.DoS(100, error("ConnectBlock() : too many sigops"),

 REJECT_INVALID, "bad-blk-sigops");
 }

Privacy

The public can see that someone is sending an amount to someone else, but without
information linking the transaction to anyone. This is similar to the level of information
released by stock exchanges, where the time and size of individual trades, the "tape", is
made public, but without telling who the parties were. As an additional firewall, a new key
pair is used for each transaction to keep them from being linked to a common owner. Some
linking is still unavoidable with multi-input transactions, which necessarily reveal that their
inputs were owned by the same owner. The risk is that if the owner of a key is revealed,
linking could reveal other transactions that belonged to the same owner.

It is also possible to run VirtaCoin as a Tor hidden service, and connect to such services.

Other Observations

VirtaCoin addresses are similar to Bitcoin addresses and can be used to send and receive
Bitcoins as well, though it is to be noted that bitcoin blockchain is enitrely different and
needs to be in reach of the wallet software in order to use such feature. One can also send
VirtaCoins to a Bitcoin address and Bitcoins to a VirtaCoin address, if they have both of
the two blockchains stored in their PC. A single VirtaCoin or Bitcoin address can as well be
used to separately manage balances of both cryptocurrencies. VirtaCoin is the first and only
scrypt-based coin to do all this. Here is an example of a VirtaCoin address:

1PZiaTusAqZtiyfxUSUUUnzZSXzfAzTE1Y

It can be seen that the address also starts with a "1", just like most Bitcoin addresses.
VirtaCoins can be sent to Bitcoin addresses that begin with a "3" such those provided by
BitGo and GreenAddress and generated by CryptoLife's Universal Address Generator.
"3" Bitcoin addresses are mostly used in multi-signature wallets and can be used to send
Bitcoins to VirtaCoin addresses as well. You will need to know the private key of your
VirtaCoin or Bitcoin address to be able to view and manage the opposite balance of the
wallet that originally created the address, meaning for a VirtaCoin address created with
VirtaCoin Core you'll need the private key in order to see any bitcoins sent to that
VirtaCoin address in a Bitcoin wallet. Exchanges and some online wallet providers don't
normally provide you with the private keys of your VirtaCoin or Bitcoin address so its
best to use addresses created from wallets that you have total control of, such as desktop or
mobile wallets. Desktop wallets such as VirtaCoin Core, MultiBit and others available at
https://bitcoin.org/en/choose-your-wallet can be used to export the private keys to a file
on your computer. Mobile apps such as Bitcoin Paper Wallet and the online Bitcoin
Wallet Generator at BitAddress.org can generate addresses with private keys.

To use VirtaCoin address as a Bitcoin address in a Bitcoin wallet simply import the
private key of your VirtaCoin address into the wallet. The popular Blockchain Wallet
works very well with your VirtaCoin address and so does MasterCoin's Omniwallet.
With both these wallet you can import your private key with ease and manage any bitcoins
sent to your address. When you import only your private key your correct
VirtaCoin/Bitcoin address (public key) will be revealed in your list of addresses. Once
you have received or sent bitcoins you should be able to view any transaction done with
your VirtaCoin address as well as your BTC balance on the Bitcoin Network using block
explorers such as Blockchain, CoinPrism or Blockr.

At the moment there isn't a way of directly viewing and managing the VirtaCoins sent to a
"3" bitcoin address. However if you generate a "3" Bitcoin address using CryptoLife and
then import the private keys into a Blockchain Wallet it will reveal a "1" Bitcoin address.
That "1" Bitcoin address is associated with the "3" Bitcoin address you generated with
CrytoLife, meaning they have the same private key and "Hash 160" identifier and can now
be used as a VirtaCoin address. The "Hash 160" identifier is shown in Blockchain's Block
Explorer whenever you try searching it for an address. If you search for your "3" address
and you click on the "Hash 160" link you'll see the same "1" address that you first saw
when importing the private key. To use your Bitcoin address as a VirtaCoin address you can

https://www.bitgo.com/
https://blockchain.info/
https://blockchain.info/
http://cryptolife.net/upwg/
http://btc.blockr.io/
https://www.coinprism.info/
http://www.blockchain.info/
http://www.omniwallet.org/
https://blockchain.info/wallet
https://www.bitaddress.org/
https://play.google.com/store/apps/details?id=ru.valle.btc
https://bitcoin.org/en/choose-your-wallet
https://multibit.org/
http://cryptolife.net/upwg/
https://greenaddress.it/en/

import the private key of your Bitcoin address into the VirtaCoin Core wallet. Please
remember to backup your wallet before importing another address into VirtaCoin Core.

Conclusion

Upon validation of our design in the Market, we expect proof-of-work designs to become
a potentially more competitive form of peer-to-peer crypto-currency due to the more
evenly de-centralised distribution resisting 51% vulnerability, also 1000 times more number
of coins than bitcoin can ever generate assumes more availabilty for investment and more
secure wealth management offering for investors (21 million max. vs 21 billion max.)
thereby achieving lower inflation/lower transaction fees at comparable network security
levels.

Acknowledgement

We would like to thank Satoshi Nakamoto and Bitcoin developers whose brilliant
pioneering work opened our minds and made a project like this possible, Colin Percival for
his work on Scrypt algorithm, Divine Sewornu Dzokoto, Prince and all of those 1.6 million
Virtapay members/Virtacoin holders for their faith, hope and support for the outcome. The
Project would be impossible without the following developers, testers, miners and other
contributors:

Andrey, Ashley Holman, b6393ce9-d324-4fe1-996b-acf82dbc3d53, bitsofproof, Brandon
Dahler, Calvin Tam, Christian Decker, Christian von Roques, Christopher Latham, Chuck,
coblee, constantined, Cory Fields, Cozz Lovan, daniel, Daniel Larimer, David Hill, Dmitry
Smirnov, Drak, Eric, Lombrozo, fanquake, fcicq, Florin, frewil, Gavin Andresen, Gregory
Maxwell, gubatron, Guillermo, Céspedes Tabárez, Haakon Nilsen, HaltingState,Han Lin
Yap, harry, Ian Kelling, Jeff Garzik, Johnathan Corgan,Jonas Schnelli, Josh Lehan, Josh
Triplett, Julian Langschaedel, Kangmo, Lake Denman, Luke Dashjr, Mark Friedenbach,
Matt Corallo, Michael Bauer, Michael Ford, Michagogo, Midnight Magic, Mike Hearn,
Nils Schneider, Noel Tiernan, Olivier Langlois, patrick s, Patrick Strateman, paveljanik,
Peter Todd, phantomcircuit, phelixbtc, Philip Kaufmann, Pieter Wuille, Rav3nPL, R E
Broadley, regergregregerrge, Robert Backhaus, Roman Mindalev, Rune K. Svendsen, Ryan
Niebur, Scott Ellis, Scott Willeke, Sergey Kazenyuk, Shawn Wilkinson, Sined, sje,
Subo1978, super3, Tamas Blummer, theuni, Thomas Holenstein, Timon Rapp, Timothy
Stranex, Tom Geller, Torstein Husebø, Vaclav Vobornik, vhf / victor felder, Vinnie Falco,
Warren Togami, Wil Bown, Wladimir J. van der Laan.

References

Nakamoto S. (2008): Bitcoin: A peer-to-peer electronic cash system.
(ht t p://www . bi t c o in . o r g/bi t c o in . p d f)

PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake
https://www.peercoin.net/assets/paper/peercoin-paper.pdf

https://en.wikipedia.org/wiki/Scrypt

https://github.com/virtacoin/
https://www.virtacoin.org

https://en.wikipedia.org/wiki/Scrypt
http://www.virtacoincore.com
https://github.com/virtacoin/
http://www.bitcoin.org/bitcoin.pdf
https://github.com/virtacoin/

